Reflecting sunlight into space has terrifying consequences, say scientists

 Workers on Germany’s highest mountain, Zugspitze, cover the glacier with oversized plastic sheets to keep it from melting during the summer months. Scientist have said geoengineering must be researched to find a possible solution of last resort to dangerous levels of global warming. Photograph: Matthias Schrader/AP
Workers on Germany’s highest mountain, Zugspitze, cover the glacier with oversized plastic sheets to keep it from melting during the summer months. Scientist have said geoengineering must be researched to find a possible solution of last resort to dangerous levels of global warming. Photograph: Matthias Schrader/AP

But ‘geoengineers’ say urgent nature of climate change means research must continue into controversial technology to combat rising temperatures

This was originally published by the Guardian

by Damian Carrington

Fighting global warming by reflecting sunlight back into space risks “terrifying” consequences including droughts and conflicts, according to three major new analyses of the promise and perils of geoengineering. But research into deliberately interfering with the climate system must continue in search of technology to use as a last resort in combating climate change, scientists have concluded.

Billions of people would suffer worse floods and droughts if technology was used to block warming sunlight, the research found. Technology that sucks carbon dioxide from the air was less risky, the analysis concluded, but will take many more decades to develop and take effect.

The carbon emissions that cause climate change are continuing to rise and, without sharp cuts, the world is set for “severe, widespread, and irreversible impacts”. This has led some to propose geoengineering but others have warned that unforeseen impacts of global-scale action to try to counteract warming could make the situation worse.

Matthew Watson, at the University of Bristol, who led one of the studies in the £5m research programme, said: “We are sleepwalking to a disaster with climate change. Cutting emissions is undoubtedly the thing we should be focusing on but it seems to be failing. Although geoengineering is terrifying to many people, and I include myself in this, [its feasibility and safety] are questions that have to be answered.”

Watson led the Stratospheric Particle Injection for Climate Engineering (Spice) project, which abandoned controversial attempts to test spraying droplets into the atmosphere from a balloon in 2012. But he said on Wednesday: “We will have to go outside eventually. There are just some things you cannot do in the lab.”

Prof Steve Rayner at the University of Oxford, who led the Climate Geoengineering Governance project, said the research showed geoengineering was “neither a magic bullet nor a Pandora’s box”.

But he said global security would be threatened unless an international treaty was agreed to oversee any sun-blocking projects. “For example, if India had put sulphate particles into the stratosphere, even as a test, two years before the recent floods in Pakistan, no one would ever persuade Pakistan that that had not caused the floods.”

The researchers examined two types of geoengineering, solar radiation management (SRM) and carbon dioxide removal (CDR). Prof Piers Forster, at the University of Leeds, led a project using in-computer models to assess six types of SRM. All reduced temperatures but all also worsened floods or droughts for 25%-65% of the global population, compared to the expected impact of climate change:

  • mimicking a volcano by spraying sulphate particles high into the atmosphere to block sunlight adversely affected 2.8bn people
  • spraying salt water above the oceans to whiten low clouds and reflect sunlight adversely affected 3bn people
  • thinning high cirrus clouds to allow more heat to escape Earth adversely affected 2.4bn people
  • generating microbubbles on the ocean surface to whiten it and reflect more sunlight adversely affected 2bn people
  • covering all deserts in shiny material adversely affected 4.1bn people
  • growing shinier crops adversely affected 1.4bn people

The adverse effect on rainfall results from changed differences in temperature between the oceans and land, which disrupts atmospheric circulation, particularly the monsoons over the very populous nations in SE Asia. Nonetheless, Forster said: “Because the [climate change] situation is so urgent, we do have to investigate the possibilities of geoengineering.”

Rayner said SRM could probably be done within two decades, but was difficult to govern and the side effects would be damaging. He noted that SRM does not remove carbon from the air, so only masks climate change. “People decry doing SRM as a band aid, but band aids are useful when you are healing,” he said.

In contrast, CDR tackles the root of the climate change problem by taking CO2 out of the atmosphere, would be much easier to govern and would have relatively few side effects. But Rayner said it will take multiple decades to develop CDR technologies and decades more for the CO2 reductions to produce a cooling effect. “You are going to have to build an industry to reverse engineer 200 years of fossil fuel industry, and on the same huge scale,” he said.

The recent landmark report by the UN Intergovernmental Panel on Climate Change (IPCC), signed off by 194 governments, placed strong emphasis on a potential technology called bioenergy carbon capture and storage (BECCS) as a way to pull CO2 from the atmosphere. It would involve burning plants and trees, which grow by taking CO2 from the air, in power plants and then capturing the CO2 exhaust and burying it underground.

“But if you are going to do BECCS, you are going to have to grow an awful lot of trees and the impact on land use may have very significant effects on food security,” said Rayner. He added that the potential costs of both SRM or CDR were very high and, if the costs of damaging side effects were included, looked much more expensive than cutting carbon emissions at source.

Both Watson and Rayner said the international goal of keeping warming below the “dangerous” level of 2C would only be possible with some form of geoengineering and that research into such technology should continue.

“If we found any [geoengineering] technology was safe, affordable and effective that could be part of a toolkit we could use to combat climate change,” said Rayner.

“If we ever deploy SRM in anger it will be the clearest indication yet that we have failed as planetary guardians,” said Watson. “It [would be] a watershed, fundamentally changing the way 7bn people interact with the world.”

“Uncertainties” is an understatement when it comes to BECCS

[This article was originally posted to the Washington Geoengineering Consortium]

by Rachel Smolker

In 2012, Biofuelwatch published a report titled “Bioenergy with carbon capture and storage: Climate savior or dangerous hype?”  We had long been working to reveal and oppose large scale industrial and commercial scale bioenergy in various forms ranging from ethanol refineries to soy and palm oil biodiesel to coal plants converting over to burn wood. We had argued that corn ethanol would drive biodiversity loss, cause food prices to rise and contribute to chronic hunger, while failing to reduce emissions, as it has in fact done. We argued that burning wood as a substitute for coal would create a new driver of deforestation, even as protecting forests and ecosystems was recognized as a “best line of defense” against climate change. We pointed out that large scale bioenergy was incompatible with the simultaneous push to quantify, commodify and protect land based carbon sinks and their “services” (often for the dubious purpose of providing offsets to polluters…). We highlighted the human rights impacts, as land grabs for bioenergy escalated in Africa and elsewhere. And we argued over and over that the carbon consequences of bioenergy were far from “climate friendly” or “carbon neutral,” a myth that has been perpetuated by industry proponents and even parroted by many naive environmentalists.

When we learned that BECCS was being advocated as an approach to “mitigation,” we turned our attention to providing a critique based on many of those, by now familiar, arguments.  When BECCS spilled into the debates on climate geoengineering, we were outraged. Then even the supposedly scientific body, the IPCC released their Working Group III (Mitigation) Summary for Policymakers in April 2014, it stated that:  “Mitigation scenarios reaching about 450 ppm CO2eq in 2100 typically involve temporary overshoot of atmospheric concentrations as do many scenarios reaching about 500-550 ppm CO2 eq in 2100. Depending on the level of the overshoot, overshoot scenarios typically rely on the availability and widespread deployment of BECCS and afforestation in the second half of the century. The availability and scale of these and other Carbon Dioxide Removal (CDR) technologies and methods are uncertain and CDR technologies and methods are, to varying degrees associated with challenges and risks (see Section SPM 4.2, high confidence).”  While they acknowledge “uncertainties,” they nonetheless incorporate BECCS into models as if its feasibility and effectiveness is a given.

In fact, “uncertainties” is an understatement. Over the years we have been making our arguments heard and fighting to oppose large scale bioenergy projects and policies, a burgeoning body of peer reviewed scientific literature has been published supporting and substantiating the concerns we raised, and public opinion has evolved and shifted. Witness for example how corn ethanol, the darling of big agribusiness, some farmers, the oil industry and many environmentalists – has fallen out of favor in public perception. Over the past few years the EPA has been lobbied by a diverse assortment of industry groups to repeal the ethanol mandate, and policymakers have supported that with introduction of legislation.

In Europe, policymakers have (at least) taken note of the evolving understanding of bioenergy, though that has not been reflected back on policy as of yet.  There have been drawn out debates over indirect land use change and “sustainability standards” in particular, with the European Commission and Council suggesting that biofuel targets should be eliminated from the next climate and energy package (after 2020).

Nonetheless, avid proponents of BECCS hold fast to the simplistic claim that it can provide a “fix” for the climate, even permitting “overshoot” – allowing greenhouse gas concentrations to rise above what is indicated for long term stabilization based on the assumption that the excess can later be “cleaned up”.

In a recent reality check, scientists estimated what it would take to sequester 1 billion tonnes of carbon using BECCS based on switchgrass feedstock. Their findings showed a startling 218-990 million hectares of land would have to be converted to switchgrass (which is 14-65 times as much land as the US uses to grow corn for ethanol); also 17-79 million tonnes of fertiliser a year – which would be 75% of all global nitrogen fertiliser used at present; and 1.6-7.4 trillion cubic metres of water a year.

Even if such a BECCS-project was to actually sequester a billion tonnes of carbon a year, the authors point out that the nitrous oxide emissions from the extra fertilizer use alone would, over the course of a century ‘offset’ 75-310% of that sequestered CO2. In other words: Increased fertilizer use alone would likely mean that either of those projects would increase greenhouse gas emissions overall and thus make climate change even worse. That does not even include the vast carbon emissions from clearing trees, shrubs and grass from hundreds of millions of hectares of land, destroying large reservoirs of soil carbon, or the emissions from all the fossil fuels burned to transport and process switchgrass. Nor does it include emissions from producing the synthetic fertilizers.

BECCS advocates also adhere to the simplistic notion that all bioenergy (from corn ethanol to burning wood) is “carbon neutral.” Therefore, it is argued, adding CCS further renders it “carbon negative”.  The “carbon neutral” claim has been refuted time and time again in scientific literature.  Timothy Searchinger was among the first to do so with a paper entitled “A Critical Climate Accounting Error“. Others have further elaborated on the carbon implications of various forms of bioenergy, from corn ethanol to crop residue cellulosic fuels to wood bioenergy. When full consideration is given, including impacts on soils, fertilizer use and both direct and indirect land use change, bioenergy processes are, in reality, far from “neutral”.

A case in point is wood bioenergy. Conversion of coal plants to burn wood, dedicated new-build wood burning power plants as well as combined heat and power and biomass boilers for heating are creating huge new demand for wood pellets. Wood burning is subsidized as renewable energy and also favored for use in dirty older coal plants that must meet new regulations on sulphur dioxide emissions.[1]  Hence large coal plants such as DRAX in the UK are converting to burn wood pellets. In the UK, these are largely imported from the southeastern USA.  While the energy industry claims to use only “wastes and residues”, those are clearly not abundantly available. Recent investigationof the largest pellet producer in the US, Enviva, revealed that they were sourcing wood from remaining pockets of endangered Atlantic coastal forests and then shipping them across the Atlantic to burn with coal.

Cutting trees to burn (or refine) for bioenergy can hardly be considered carbon neutral or climate friendly.[2] Though this would seem to be common sense, there are now many scientific studies showing that uncut forests (and their soils) store more carbonthan those that are disturbed and harvested[3], and continue to do so as they grow older, storing far more than fast rotation industrial tree plantations. Even ignoring the impacts on forests, harvest and transportation and looking only at the emissions coming from smokestacks, wood releases around 50% more CO2 per megawatt of electricity generation than coal!

If bioenergy is not carbon neutral, then it simply cannot be rendered carbon negative by adding CCS, even if captured carbon were securely stored away (which we will see below, is unlikely).

So the enthusiasm for BECCS and continued “carbon negative” rhetoric seems a bit puzzling.  Are proponents of BECCS just horrifically poor at math?  Or is there some other motive behind the ongoing support for a technology that appears entirely nonsensical and lacking credibility?  Perhaps BECCS supporters are scared stiff about the pace and scale of global climate change, understand that desperate measures are needed, and consider BECCS, in spite of shortcomings, to be “more benign” than other approaches such as sulphate particle injection into the stratosphere? That was certainly the overarching mood at the recent IASS conference on climate geoengineering in Potsdam, Germany.

Or perhaps there is something else going on?  Many climate “solutions” that are being offered to us are in fact those that large and powerful corporations such as the oil companies are willing to engage.  We have been hearing the term “clean coal” for decades now.  Why the persistence?

Here is one possibility: according to an analysis commissioned by the U.S. Department of Energy (DOE) there are large amounts of oil lying around in the difficult to access depths of previously depleted oil wells.  That oil could be accessed using “enhanced oil recovery”, which can be achieved by pumping compressed CO2 into those wells to force out the remaining difficult to access oil.[4]  They project that at least 137 billion barrels of oil could potentially be extracted, 67 billion barrels of which could be economically recoverable at a price of $85 a barrel.  That is three times the current U.S. proven reserves!

The National Energy Technology Laboratory “EOR Primer” states that “somewhere around 85 billion barrels of oil are recoverable using CO2 EOR, which currently is responsible for about 4 percent of U.S. oil production, displaying a long-term growth trend that stands in stark contrast to the long-term decline trend for U.S. oil production overall. Certainly, the volume of “stranded” oil left behind in U.S. reservoirs after conventional primary and second recovery techniques is massive—as much as two-thirds of all the oil discovered in the United States resides in this category.”[5]

In short, with oil reserves becoming more and more difficult to access and extract, EOR is becoming more and more attractive.

The US Chamber of Commerce recognizing this, states: “In terms of economic and energy security, this [EOR] means billions of dollars of new investment in the U.S. and production potential of 4 million barrels a day of oil for 50 years from existing US oil fields. The investment required would not just be in oil fields themselves but also in power plants, pipelines and other industries that capture CO2 from their industrial processes., The economic benefits will also flow to the state and federal governments with an estimated 1.4 trillion in new government revenues. In addition to the direct benefits to the U.S., the technology used to produce this additional oil will help maintain US leadership in oil production technology, creating opportunities around the world for U.S. companies.”[6]

What is needed to make these dreams of riches come true? Chamber of Commerce states:  “The challenge of realizing this potential is primarily the availability of CO2 at prices that support economic operations. This is also one of the opportunities since CO2 is emitted by power plants and many industrial processes.”  And the MidwesternGovernors Association, major advocates for CCS development state: “With unstable oil prices, commercially proven technology and know-how readily available and private capital waiting to invest, the MGA CCS Task Force aims to address the major remaining barrier to ramping up EOR: the lack of industrial sources of captured CO2 large enough and sufficiently long-term to justify private investment in pipelines and other infrastructure needed to expand EOR to additional fields.”

According to the National Enhanced Oil Recovery Initiative there is a market for somewhere around 20 billion metric tons of CO2.  The Natural Resources Defense Council (purportedly an environmental group!) offers that supplying adequate supplies of CO2 would require installation of between 69-109 gigawatts of coal and natural gas power plants equipped with carbon capture.[7] Indeed, what they are advocating for is construction of vast new fossil fueled power plant capacity as a way to provide cheap CO2 to facilitiate extraction of more oil.[8]

Somehow, many in industry, academics and policymaking as well as certain members of the public, have been convinced that this is a “solution” to the climate crisis.

Carbon capture is costly in part because it requires additional energy to capture and separate CO2 from a heterogeneous mix – as emerges from the stack of a coal combustion facility for example. Capturing the nearly pure stream of CO2 emitted from corn ethanol refinery fermentation processes is cheaper however, and footing the bill for the added costs associated with carbon capture can be further offset by taking advantage of the market for CO2 availed by EOR.

According to advocates from the Great Plains Institute, “Ethanol won’t be a large source of CO2 over time compared to power plants, but it will be an important one because it can be an early participant in providing CO2 to the oil industry—there really are no technological barriers whatsoever.”

A key question (assuming we even wanted to pursue it this far), is whether CO2 used for EOR, is “sequestered” or not?  Projects that employ EOR are after all, referred to as CCS – but is the “S” really happening? Or is the CO2 used for EOR just re-released into the atmosphere along with the carbon from yet more oil extraction?  Finding the answer to that question has not proven straightforward. One almost gets the sense there is deliberate obfuscation. In the EOR process, CO2 mixes with the oil, much like detergent mixes with grease when dishwashing. That expands the volume and forces the oil out. So once the oil/CO2 mixture has been extracted, presumably it must then be separated out again and perhaps then reinjected back into the well.  All of those added steps ust contribute  to costs and energy demands of the process. The term “Carbon Capture and Storage thus appears to be largely a misnomer and indeed the term “Carbon Capture and Utilization” is now coming into use along with terms such as “Negative Emissions”.

If CO2 is captured following EOR and re-injected into underground storage spaces, those wells would need to be capped and sealed to ensure no leakage.  The Chamber of Commerce states that “If CO2 sequestration for long term storage is planned for the site, then a monitoring plan is developed and implemented. Once monitoring demonstrates that CO2 has not migrated out of the rock formation over the near term (tens of years) then there can be great certainty that no migration will occur in the long term (hundreds or thousands of years).”  In other words: we don’t know, and we will leave it to future generations to deal with the consequences.

Common sense, informed by our current understanding of earth history, plate tectonics and earthquakes tells us that assuming long term CO2 storage would be foolish. CO2 is not only a danger to climate, but in concentrated form, it is a lethal poison. Any abrupt release of concentrated CO2 could have serious impacts on those exposed, as well as contributing a sudden spike of CO2 to climate. Multiple small leaks also pose risks. They can occur at many points from capture process to compression to pipeline transport to injection, separation and reinjection and storage site leaks.

Assuming long term storage of CO2 underground is foolhardy.  Experience with the wrongful claims made by the nuclear industry (Chernobyl, Fukushima etc.) or by the oil industry (Deep Horizon) should serve as clear lessons:  Relying on industry claims about safety and reliability is unwise. Precaution is very highly advised!

The underlying motive behind CCS remains  to perpetuate the ongoing use of fossil fuels. At the recent UN Climate Summit in New York City, the World Business Council on Sustainable Development released a bizarre animated portrayal of the city buried under endless floods of oil. Their conclusion to the problem of such gluttonous and ongoing oil consumption: a carbon tax with the proceeds directed to developing “carbon capture and utilization” (EOR).

Concerns aside, what experience do we have with CCS? The coal industry has been proclaiming the potential for “clean coal” in spite of virtually no existing practice, for decades. Yet CCS remains very expensive, largely nonexistent and where it does exist, “storage” remains a misnomer.

A “groundbreaking” was just held for the Petra Nova facility in Texas, slated to be the “world’s largest”. This facility will use captured CO2 for EOR in the nearby Hilcorp owned West Ranch oil field, where oil extraction is to be increased from 500 to 15,000 barrels per day. In news interviews, CEO of partner company JX “insisted” that some of the Co2 would be permanently sequestered and thus the project “does tackle climate change to some extent.”

The $1.3 billion dollar SaskPower Boundary Dam Power Station CCS project recently started operation – the first post combustion coal plant fitted with CCS. The project is proclaimed as “making a viable technical, economic and environmental case for the continued use of coal.” Further they claim to provide a “90% greenhouse gas reduction…the equivalent of taking more than 250,000 cars off the road annually.”  And yet the facility will sell the majority of captured CO2 to Cenovus for EOR. Emissions from the additional oil extraction are invisible in the hype surrounding the facility opening.

The notorious “FutureGen” CCS project in Illinois was initially funded in 2003 under the Bush administration, then cancelled due to high costs and a legal challenge. It was recently granted a new lease on life with $1 billion in DOE funding yet still remains far from operational.

In Kemper County Mississippi, a coal CCS project  was initially projected to cost 2.4 billion and to date estimates have risen to 5.4 billion and rising. Again, the captured CO2 is to be used for EOR at nearby Denbury Resources owned wells. According to a recent Wall Street Journal report: “The only thing the Kemper power plant is burning now is money. The plant has suffered almost every kind of cost overrun, beset by bad weather, labor costs, shortages and “inconsistent” quality of equipment and materials, and contractor and supplier delays.”

The AEP owned Mountaineer Plant, a coal burning facility in West Virginia was put on hold due to excessive costs.

And, the contentious Duke Energy coal gasification facility in Edwardsport Indiana was reportedly using more energy than it produced even after massive cost overuns and ratepayer outrage. THe Sierra Club refers to this project as “A monument to cost overuns, concealment and malfeasance.”

Capturing CO2 streams from natural gas extraction processes has been demonstrated (Sleipner and elsewhere) But even that has been frought with difficulties.  A much touted plan to capture CO2 from the Mongstad facility in Norway was recentlyabandoned after monumental cost overuns.

The largest bioenergy project with CCS by far involves a corn ethanol refinery owned by Archer Daniels Midland, in Decatur Ill. This project aims to store captured CO2 in nearby Mount Simon saline aquifer. The estimated costs are 207 billion and has required construction of a separate power plant to provide energy for capture, dehydration and compression of the CO2.

Just as the myth that burning biomass is “carbon neutral” has been relentlessly perpetrated, now another myth has emerged.  This myth refers to CCS as a means of sequestering carbon – removing it from the atmosphere and fixing the problem of climate change.  Yet in reality CCS is the oil and coal industry’s dream technology! Through a tangled web of misinformation and rhetoric they have convinced many that we should build more fossil and bioenergy industrial facilities, which will need even greater capacity to power carbon capture, which will then facilitate extraction of yet more oil.  This is sold to us as a “solution” to the climate crisis and in the case of bioenergy applications, as “climate geoengineering”.

While a remarkeable number of people, including IPCC scientists and even some environmentalists even appear easily fooled, the atmosphere and earth systems certainly will not be!

Dr. Rachel Smolker is a codirector of Biofuelwatch, and an organizer with Energy Justice Network. She has researched, written and organized on the impacts of biofuels, bioenergy and biochar on land use, forests, biodiversity, food, people and the climate. She works with various coalitions, national and international including the Mobilization for Climate Justice, Climate Justice Now and others opposing market-based solutions to climate change and other “false solutions”. She is the daughter of one of the founders of Environmental Defense Fund and participated in a protest against that organization because of the key role EDF played in advocating market based solutions to climate change. She has a Ph.D. in ecology/biology from the University of Michigan and worked previously as a field biologist, gaining first hand experience with the complex balance between the needs of people and the ecological systems they depend upon. She is author of “To Touch A Wild Dolphin” (Doubleday 2001) and lives in Vermont. A list of publications is available on request.

Five facts CBC listeners didn’t hear from Canada’s geoengineering cheerleader

What’s missing from David Keith’s climate change charm offensive

by Jim Thomas

This article was originally published by the Media Co-op.

David Keith's preferred geoengineering scheme involves spraying sulphuric acid into the atmosphere.
David Keith’s preferred geoengineering scheme involves spraying sulphuric acid into the atmosphere.

Last Sunday, CBC listeners across Canada enjoyed their morning coffee and took care of a few chores around the house while the calm, mellifluous vocal cadences of Michael Enright and his guest David Keith washed over them. Keith, Enright said while introducing his guest, is a prominent and well-respected scientist, and the author of “The Case for Climate Engineering.”

Although both David Suzuki and Al Gore had branded Keith’s proposals “insane, utterly mad and delusional in the extreme”  Enright took pains to reassure listeners that his guest — a Harvard professor — was perfectly sane. Enright was kinder to Keith than Stephen Colbert had been a few months previous, and so unfortunately avoided a number of tough questions.
Climate Geoengineering is the process of attempting to counteract climate change by large-scale methods other than reducing carbon emissions. These include spraying tonnes of sulphuric acid into the atmosphere (Keith’s preferred option), mounting giant space mirrors to reflect sunlight and slow its warming effects, dumping tonnes of iron filings into the ocean to stimulate plankton growth, and sucking carbon out of the atmosphere with giant fans.
These measures have been opposed both because of their unpredictable effects and the fact that they give an excuse to rich countries to continue to increase carbon emissions on the basis of trumped-up techno-promises. In the same breath, Keith acknowledges and dismisses these criticisms.
Environmentalists who oppose geoengineering, Keith told Enright, are “more committed to their answer to the problem than really thinking in what I feel is a morally clear way about what our duties are to this generation and reducing the risks that they feel.”
Keith made the case for geoengineering, but he also made the case that those who oppose geoengineering are doing so because they have priorities other than slowing down the effects climate change. He aligned geoengineering with concerns about “how we want to leave the planet for our great-grandkids.” He took the time to talk about kayaking trips, and how he was motivated by a love of the natural world.
Keith didn’t take the time to mention a few other details. For those who are skeptical about Keith’s case for geoengineering, here are five things that Keith didn’t mention, and Enright kindly didn’t bring up.
1. David Keith runs a geoengineering company funded by tar sands money
In addition to being an author and a professor, David Keith heads up Carbon Engineering, a Calgary-based startup that is developing air-capture technologies for removing carbon dioxide from the atmosphere. The company is funded by Bill Gates, who is also a geoengineering proponent, and by N. Murray Edwards, an Alberta billionaire who made his fortune in oil and gas. Edwards is said to be the largest individual investor in the tar sands, and is on the board of Canadian Natural Resources Limited, a major tar sands extraction company. Carbon Engineering hopes to sell the carbon dioxide it extracts to oil companies to help in Enhanced Oil Recovery (EOR)- a technique for squeezing more fossil fuels out of the ground which will in turn be burnt to produce more atmospheric carbon.
2. The geoengineering that Keith proposes could be disastrous for the Global South
A study of the likely effects of one of the methods Keith is promoting, spraying sulphuric acid into the atmosphere with the aim of reflecting sunlight could cause “calamitous drought” in the Sahel region of Africa. Home to 100 million people, the Sahel is Africa’s poorest region. Previous droughts have been devastating. A 20-year dry period ending in 1990 claimed 250,000 lives. Other models predict possible monsoon failure in South Asia or impacts on Mexico and Brazil, depending where you spray the sulphur.
3. Keith’s geoengineering proposals are deeply aligned with the financial interests of the fossil fuel industry
If oil, natural gas and coal companies can’t extract the fossil fuels that they say they’re going to extract, they stand to lose trillions of dollars in stock value, $2 trillion in annual subsidies, and about $55 trillion in infrastructure. David Keith’s enthusiasm for geoengineering plays to the commercial interests of these companies whose share value depends on their ability to convince investors that they can continue to take the coal out of the hole and the oil out of the soil. This may be why fossil-sponsored neoconservative think tanks such as the American Enterprise Institute and the Heartland Institute have been so gung-ho for geoengineering research and development along exactly the lines that David Keith proposes. For example there is very little difference between what Keith proposes and what the American Enterprise Institute’s Geoengineering project calls for.
4. Climate scientists just issued a new round of criticisms of geoengineering
In the most recent report of Working Group II of the Intergovernmental Panel on Climate Change (IPCC), released before Keith’s interview aired, climate scientists loosed a new salvo of problems with various geoengineering schemes. “Geoengineering,” according to the report, “poses widespread risks to society and ecosystems.” In some models, Solar Radiation Management (SRM) — what Keith is pitching — “leads to ozone depletion and reduces precipitation.” And if SRM measures are started and then stopped for whatever reason, it creates a risk of ”rapid climate change.”
5. There’s already a widely-backed moratorium on geoengineering
While David Keith discussed possible ways of governing geoengineering internationally  he failed to mention that at least one UN convention was already dealing with the topic. The broadest decision yet on geoengineering, a 193-country consensus reached at the UN Convention on Biodiversity specifies that unless certain criteria are met, “no climate-related geo-engineering activities that may affect biodiversity take place.” The moratorium is to remain in effect until geoengineering’s impacts on biodiversity and livelihood are analyzed, scientific evaluation is possible, and “science based, global, transparent and effective control and regulatory mechanisms” exist.
In the interview, Keith said outright that he wants to bypass such a system. He considers the input of Africa and South America, and much of Europe and Asia as unnecessary in order to move forward with a geoengineering scheme. It would be enough, he told Enright, to gain the agreement of a small but powerful “countries with democratic institutions,” citing China as an example, along with the US and the European Union. David Keith has been recognized for his achievements in applied physics, but when it comes to political science, it may be time for him to hit the books.
Jim Thomas is a Research Programme Manager and Writer at ETC Group.

 

Science or propaganda? New hype about Bioenergy with Carbon Capture and Storage

A new article published in Environmental Research Letters has made media headlines such as “Burning trees ‘may help global warming”.  It is not unknown for the media to hype up and even misrepresent announcements by scientists, but in this case, the authors’ own press release indeed promises amazing prospects from Bioenergy with Carbon Capture and Storage (BECCS):  “What we demonstrate in our paper is that even if we fail to keep temperature increases below 2°C, then we can reverse the warming trend and push temperatures back below the 2°C target by 2150.”

Continue reading

Another study reveals dangers of geoengineering through ‘iron fertilisation’

Diatom, picture: Alfred Wegener Institute for Polar and Marine ResearchYet another study questions shows how dangerously simplistic the assumption that dumping iron filements into oceans will sequester carbon is.  This latest study, by Ellery D. Ingall et al, published in Nature Communications, looks at a particular type of phytoplankton, a diatom which soaks up iron from oceans and stores it in its skeleton and thus, when the phytoplankton dies, on the ocean floor.  Continue reading

Don’t Dump Iron — Dump Rogue Climate Schemes

George-Russ-Dumping-from-Ocean-Pearl-2012-Photo-HSRCOriginally posted to Huffington Post

by L. Jim Thomas

The press release had a pretty stark headline: “Haida Announce Termination of Russ George.” If the name sounds familiar its because he is the Californian businessman who last year led the world’s largest, and unapproved, geoengineering (climate manipulation) scheme to dump over 100 tonnes of iron into the Pacific ocean west of Haida Gwaii in British Columbia. Dubbed a “geo-vigilante” by The New Yorker and a “rogue” geoengineer by almost everyone else (including the World Economic Forum and Canada’s environment minister Peter Kent), George was the guy who persuaded the small impoverished indigenous community of Old Massett on Haida Gwaii to part with over $2.5-million. He did so under the pretense that dumping iron in the ocean to stimulate a plankton bloom would net lucrative profits in the carbon credit market and maybe even bring back salmon stocks. Continue reading

SPICE Boys Cancel Scheduled Appearance

KINKhoseIt’s clear from the tweets on HOME’s homepage that the news is already known: SPICE is out; the ‘Trojan Hose’ won’t spout.

But in case you missed it: On May 15, the Principal Investigator (PI) for the Stratospheric Particle Injection for Climate Engineering project announced that a planned field trial associated with the project won’t happen. The intention had been to test hardware that could be used to inject aerosols into the stratosphere to block sunlight as a way to artificially cool the planet, a form of “solar radiation management.”

Everyone who voiced opposition to the geoengineering experiment since last September – including those who signed the HOME campaign’s open letter to the funders of SPICE asking for its cancellation – should feel heard. (The open letter, signed by more than 70 organizations from around the world, can be found here.)

SPICE’s PI cited both governance issues and potential conflict-of-interest as the principal reasons for cancelling the field trial – no argument here, though there are plenty more reasons to oppose SPICE. Namely, the entire geoengineering enterprise is dangerous, wrong-headed and counter-productive. What is certain, however, is that the cancellation of SPICE doesn’t signal the end of geoengineering or of field trials to test its feasibility. Other real-world experiments are already in the works. There will be lots of HOMEwork in the near future!

Please consider commenting on the CBD papers on Geoengineering: Make your Views Known by February 22

View + Comment at this link:

http://www.cbd.int/climate/geoengineering/review/

The Convention on Biological Diversity adopted a moratorium on geoengineering activities in 2010.  The Secretariat was instructed to prepare two papers as part of that decision:  one on the impacts of geoengineering on biodiversity and the other on regulatory frameworks.  Those papers are now
available for peer review.  Please provide your comments if you can at this website.  If you would like to see the main comments submitted by

ETC Group on the first draft of the paper on the impacts on biodiversity, check out this document